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Abstract

Spatial dataflow computer architectures allow us to remove control logic over-

head seen in traditional computer architectures such as central processing units

(CPUs), by determining the control at compile-time. Many of the spatial data-

flow architectures are marketed as artificial intelligence (AI) accelerators, and

offer integration with common AI frameworks. However for general computa-

tions, they require the programmer to learn new complex device specific pro-

gramming languages. The lack of support from high-level libraries make them

hard to use as high-performance computing (HPC) accelerator.

In this thesis we present aieblas, a Basic Linear Algebra Subprograms (BLAS)

library for the AMD/Xilinx AI Engine (AIE), which can compile full dataflow

designs consisting of chained BLAS routines for the AIE. The library offers an

expandable core which makes it possible for new operations and optimizations

to be implemented, and the main design principles of the library apply to other

spatial dataflow architectures as well.

We evaluate the designs generated by aieblas by comparing the performance

to OpenBLAS, a popular BLAS implementation for CPUs, as well as evaluating

the performance of several optimizations integrated into the library.

We conclude that our library provides a new way to program AMD/Xilinx AI

Engines, without requiring a deep understanding of the underlying program-

ming model.
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1

Introduction

For decades we have relied on Moore’s law [1] (which predicts that the number of transistors

in integrated circuits approximately doubles every two years) to improve the performance

of computation on central processing units (CPUs). This has largely been possible due to

Dennard scaling [2], a scaling law which states the power density should stay constant as

transistors get smaller. However researchers have observed that Dennard scaling no longer

applies to current technological advancements and that we have reached the end of Moore’s

law [3, 4]. Horowitz shows that modern CPUs have a very high energy overhead due to

their programmable architecture, spending over 50% of the energy on control logic [5]. To

combat this, hardware manufacturers have started moving to more specialized computer

architectures. An example of this are spatial dataflow architectures, which aim to move

some of the logic that can be computed in advance to compile-time [6].

The new dataflow architectures often specifically aim the acceleration of artificial intelli-

gence (AI) workloads, such as machine learning (ML). We would however ideally also be

able to use these architectures for more general computational use-cases as well. To pro-

gram the devices, manufacturers often offer integration with popular high-level AI frame-

works (e.g. PyTorch [7] and TensorFlow [8]), however these frameworks are hard to use for

non-AI use-cases. The manufacturers also tend to offer a custom programming platform

which provide specialized functionality to utilize the full capabilities of the device. While

these programming platforms are often capable to program the device for general use-cases,

they are often hard to use and require in-depth knowledge from the program. It would be

useful to have a more generalized library than the AI frameworks, without the programmer

having to learn the custom programming platform.
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1. INTRODUCTION

The Basic Linear Algebra Subprograms (BLAS) specification is a popular generalized linear

algebra library [9]. There are many BLAS implementations available for CPUs and graphics

processing units (GPUs), such as OpenBLAS [10], BLIS [11] and cuBLAS [12]. A BLAS

library would offer a more generalized library than most AI frameworks, while still being

easy for a programmer to use. However currently no BLAS libraries exist for most dataflow

architectures.

The AI Engine (AIE) developed by AMD is an example of a dataflow architecture. AMD

has released several devices with an embedded AIE, including laptop and desktop CPUs,

as well as field-programmable gate arrays (FPGAs). In this thesis we will investigate

whether it is possible to develop an effective BLAS library for the AIE using an AMD

Versal VCK5000. Our goal for the BLAS library is to (1) use a dataflow approach to

utilize the benefits provided by the dataflow architecture of the AIE, (2) be easy for users

to use without requiring deep knowledge of the underlying tools, (3) be easily expandable

with new functionality and optimizations, and (4) have the concepts behind the library be

reusable for other dataflow architectures.

1.1 Research questions

To develop our BLAS library (aieblas) we will first have to determine a set of design

choices that ensure the libraries usability and expandability. Thus the first research ques-

tion we will investigate is:

[RQ1] Which design choices ensure a usable and expandable BLAS library

targeting a spatial dataflow architecture?

To accomplish this, we look at how we can map the BLAS routines to a dataflow model,

and determine important design choices to make sure we can fully utilize the dataflow

architecture. We will also determine an input interface for the BLAS library, which is both

easy to use for users of the library, and can be easily expanded.

With the design requirements in place we can start creating the aieblas library. To guide

us through this process, we will investigate the next research question:

[RQ2] How can we automatically generate a dataflow program consisting of

BLAS routines for an AI Engine from a high-level specification?
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1.2 Main contributions

Here we will focus on how we can automate the process, such that the only input required

from the user is the high-level specification, but also how we can follow the design goals

and keep the design expandable and eaasy to use.

To ensure the capabilities of the dataflow architecture are properly utilized, we will re-

search what optimizations we can apply to the code generation, by answering the research

question:

[RQ3] What optimizations can we apply to the kernel generation of BLAS

routines to make the BLAS routines more performant on an AIE?

Here we will investigate both general optimizations that can be applied to any BLAS

routine, as well as routine-specific optimizations.

Lastly to evaluate the effectiveness of aieblas, we will compare the performance of the

aieblas library to the performance of other CPU BLAS libraries, and answer the question:

[RQ4] How performant is the aieblas library compared to other BLAS libraries

when performing common routines?

We will use the CPU BLAS library OpenBLAS, to compare the performance of aieblas

routines running on the AIE to the same routines running on the CPU.

1.2 Main contributions

In this thesis we make the following contributions:

1. We explain the AIE toolchain and how BLAS routines can be mapped to the AIE tiles

in a dataflow program.

2. We present a new open-source BLAS library aieblas for the AIE, which allows

programmers to calculate general numerical computations on the AIE without deep

knowledge of the hardware and software tools.

(a) The library is easily expandable with new functionality and optimizations, and

the concepts behind the library are reusable for other dataflow architectures.

3. We propose several optimizations that can be applied to BLAS routines running on

the AIE.

3



1. INTRODUCTION

4. We have evaluated the performance of aieblas against OpenBLAS, a popular BLAS

library for CPUs.

(a) We have additionally evaluated the performance of some of the proposed op-

timizations by comparing them to their unoptimized counterparts.

1.3 Plagiarism declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

internet or machine), and has not been submitted elsewhere for assessment.

1.4 Acknowledgement

This work was supported in part by AMD under the Heterogeneous Accelerated Compute

Clusters (HACC) program.
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2

Background

2.1 VCK5000 and AI Engine

2.1.1 Hardware overview

The AMD Versal VCK5000 [13] is a heterogeneous hardware platform, part of the Versal Ad-

aptive Compute Acceleration Platform (ACAP) device series. The VCK5000 consists of

an FPGA with programmable logic (PL) and dynamic random access memory (DRAM),

and a VC1902 AI Core with 400 AI Engine cores.

FPGA specifications

The resources available on the PL of the FPGA in the VCK5000 are show in Table 2.1. The

look-up table (LUT)and flip flop (FF) units are used to store small amounts of data and

logic, while the block random access memory (BRAM) units are used to store larger blocks

of data on the FPGA. The digital signal processing (DSP) units are used for computing

floating-point operations on the FPGA. [14]

Resource Count
LUT 899,840
FF 1,799,680
DSP 1,968
BRAM 967

Table 2.1: Logic blocks available on the FPGA part of the VCK5000.
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2. BACKGROUND

Figure 2.1: AI Engine array overview showing the AIE tiles in a 2D grid, with connec-
tions to neighbouring tiles. Figure from Versal Adaptive SoC AI Engine Architecture Manual
(AM009). [15]

The FPGA also has 16 GB of DRAM memory, which can be used to store large amounts

of data, and can be accessed from the host device. This is mostly useful to store input and

output data to be communicated with the host.

AI Engine specifications

The VC1902 AI Core contains an AIE array, consisting of a 2D 8×50 grid with AIE tiles.

Figure 2.1 shows an overview of a part from the AIE array, showing nine of the AIE tiles.

Each tile contains a very long instruction word (VLIW) processor (reffered to by AMD as

an AI Engine), which contains one scalar unit, one vector unit, two load units, and one

store unit. Each tile additionally has a memory module, containing eight memory banks

of 4 KB, totalling to 32 KB of local memory on each AIE tile.

To send and receive data, each AIE tile contains three types of connections: (1) two cascade

streams to connect to the accumulator of the left and right neighbouring AIE tiles, (2) four

memory connections to the neighbouring memory blocks, and (3) Advanced eXtensible

Interface 4 (AXI 4) interconnects connecting all the tiles in the AIE array.

The cascade streams are arranged in a snake like pattern going through all the tiles in the

array. On the even rows it connects the AIE tiles from left to right, and on the odd rows

6



2.1 VCK5000 and AI Engine

from right to left. Add the edges of the grid, where the last AIE tiles have no outgoing

cascade stream, they are connected to the tile below them. Only the top left AIE tile

has no incoming cascade stream, and the bottom right AIE tile has not outgoing cascade

stream. The cascade stream allows for a 384-bit wide connection between the tiles, but it

can only send data from the accumulator.

As can be seen in figure 2.1, the memory module is positioned on the right side of the

tile in the even rows, and on the left side in the odd rows. Each AIE tile can access the

memory of its own tile, and three neighbouring tile. It cannot access the memory from

the tile on the other side of the memory module, meaning the even row tiles cannot access

neighbours on the right, and the odd row tiles cannot access neighbours on the left. Each

memory port supports up to a 256-bit wide connection.

The AXI 4 interconnects allow two input streams and two output streams to be set up in

each AIE tile, where each stream is 32-bit wide.

2.1.2 Toolchain overview

To program the VCK5000, we need to take three parts into account. (1) Designing a kernel

which will be mapped to a single AIE tile and performs a computation on a small chunk

of data; (2) creating a data flow graph to create a chain of AIE kernels and providing a

specification for the external data connections; and (3) creating PL kernels to move data

between the host and the AIE array. [16]

Figure 2.2 shows how the software constructs map to the hardware platform described in

section 2.1. Each instance of an AIE kernel is mapped to a single AIE tile, while the data

flow graph corresponds to the whole AIE array and describes in which tiles the AIE kernels

will be placed and which tiles will be connected with data streams. Lastly the PL kernel

is mapped to the PL on the FPGA, connected to the AIE array by the PLIO.

AI Engine kernel

The AIE kernel is written in C++ with special intrinsics provided by an application pro-

gramming interface (API), the AIE API. The API includes special vector data types and

vector arithmetic functions to target the vector units on the AIE processors, which AMD

notes as being important to achieve the highest performance on the AI Engine [16]. The

data types and functions in the API are implemented in a C++ header-only library, which

get translated into optimized intrinsic functions. The supported vector types and sizes are

7



2. BACKGROUND

Figure 2.2: Diagram showing how the software constructs used by the AIE toolchain
map to the AIE hardware. Figure from AI Engine Kernel and Graph Programming Guide
(UG1079). [16]
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2.1 VCK5000 and AI Engine

type size type size
(u)int8 16/32/64/128 float 4/8/16/32
int16 8/16/32/64 cint16 4/8/16/32
int32 4/8/16/32 cint32 2/4/8/16
int64* 2/4/8/16 cfloat 2/4/8/16

* Emulated type which is not supported by all arithmetic functions

Table 2.2: Vector types and sizes supported by the AI Engine.

listed in table 2.2. We can see that 64-bit data types are not natively supported, and that

vectors have a minimum size of 128-bits.

The aiecompiler, which compiles the AIE program to a design that can run on the

AIE array, internally uses the Chess compiler by Synopsys, which provides additional

special compiler pragmas that offer more control over loop scheduling, memory alignment,

memory sequencing, and conditional tuning. [17]

Exchanging data To exchange data between AIE tiles in the array and to exchange data

over PLIO, windows or streams can be added as arguments to the kernel. The streams

provide direct synchronized access to external data using the AXI 4 interconnects described

in section 2.1. A stream can either be an input stream to read data, or an output stream

to write data. If the kernel kernel tries to read from an empty input stream it can stall,

and likewise it can also stall if the kernel tries to write to a fully buffered output stream.

Windows on the other hand use buffers in the memory of the AIE tiles and provide the

kernel with a chunk of data, where the size of the chunk is declared in the data flow graph.

If possible, the windows will use the direct memory connections described in section 2.1

to access the data in the buffer. If the tiles exchanging data do not have a direct memory

connection, a ping-pong model is used, where both tiles have their own buffers and once a

buffer gets filled it uses the AXI 4 interface to send the data to the buffer of the receiving

tile.

Like the streams, a window can either be an input window to read data, or an output win-

dow to write data to. If the kernel contains one or multiple input windows as argument,

the kernel will wait until all the input windows are filled with a chunk of data before it

starts executing. Once the kernel starts executing it can read and write data from the

window, and only once the kernel has finished the data in the output windows is send to

the external connection. The windows are designed to be accessed sequentially, and the

9



2. BACKGROUND

kernel keeps track of the current position in a given window. Using the AIE API, we can

use special window functions to increment or decrement this position.

The main difference between the stream-based and window-based approach for streaming

data to the AIE kernel is that in the window-based approach, the AIE kernel gets incoming

blocks of data from the input windows, from which it produces new blocks of data to the

output windows, while the AIE kernel can run indefinitely when using the stream-based

approach.

1 // Number of elements in a window based on the width defined in the graph

2 #define NUM_SAMPLES 64

3 void vector_add(input_window<int32> *x, input_window<int32> *y,

4 output_window<int32> *out) {

5 for (unsigned i = 0; i < NUM_SAMPLES / 4; ++i) {

6 aie::vector<int32, 4> vx = window_readincr_v<4>(x);

7 aie::vector<int32, 4> vy = window_readincr_v<4>(y);

8 aie::vector<int32, 4> vout = aie::add(vx, vy);

9 window_writeincr(out, vout);

10 }

11 }

Listing 1: Example vector add kernel using the window-based approach.

Listing 1 shows an example kernel using the window-based approach to calculate a vector-

add. On lines 6 and 7 we see the window_readincr function being used to read a vector of

4 elements from the input windows, and the incr parts means this function will increment

the position in the window by 4. On line 8 the AIE API is used to perform a vector add

on two vectors of size 4, which is stored in vout. Lastly on line 9 window_writeincr is

used to write the 4 elements of the vector to the output window, again incrementing the

position by 4 elements afterwards.

Data flow graphs

The adaptive dataflow (ADF) graph defines how the external interfaces of the AIE kernels

are connected. The AIE API provides a special header for the ADF graph containing a

base specification for a Graph class. To create our own ADF graph, we have to subclass this

Graph class. This class defines the kernel instances that will be mapped into the AIE array,

10



2.1 VCK5000 and AI Engine

the external PLIO connections the AIE kernels will connect to, and the internal data

streams between the AIE kernels. This graph definition will be parsed by the aiecompiler

to extract the graph definition to create a floorplan for the AIE array, but also as an entry

point to extract information such as the source code location for the kernels that need to

be compiled.

Kernel declaration To add a kernel to our graph definition, we need to add a kernel

object provided by the ADF header to the graph definition. In Listing 2 we show a basic

definition providing a single instance of the vector add kernel defined in Listing 1. In the

class constructor on lines 7–8, we can see that we initialize the kernel object by calling

the kernel::create function and passing the C++ function prototype of the vector add

kernel as an argument. We also specify the source file location containing the kernel

implementation itself. Lastly we specify the runtime ratio of the kernel. Multiple kernels

can be mapped onto the same AIE tile, but each tile can only execute a single kernel at the

same time. The runtime ratio is used to determine how many cycles the kernel is allowed

to run before it is swapped out for the next kernel. The runtime ratio must be between

zero and one.

1 using namespace adf;

2 class simpleGraph : public graph {

3 private:

4 kernel vadd;

5 public:

6 simpleGraph() {

7 vadd = kernel::create(vector_add);

8 source(vadd) = "kernels/vadd.cpp";

9 runtime<ratio>(vadd) = 0.9;

10 }

11 }

Listing 2: An incomplete graph definition containing a single vector add kernel.

Connecting the kernels To specify the data flow in the AIE array we have to specify

data connections in the graph definition. In Listing 3 we extend the graph definition from

11
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Listing 2 by connecting the inputs and outputs of the vector add kernel to PLIO. On lines

5–7 we add PLIO objects to the kernel, which we initialize in the constructor on lines

14–16. For each PLIO object we specify the bus width of the connection, which can be

32-, 64-, or 128-bits [18], as well as a path to a data file. This data file is used during

simulation to feed data to the AIE in the absence of an actual PLIO connection.

On lines 17–19 connect objects are used to connect the PLIO to the kernels. The tem-

plate argument specifies the type of connection is used, this can be stream when using

input/output streams, or window when using input/output windows. When using win-

dows, the window size is also defined using the template argument. The constructor of

the connect object takes two arguments; the first argument specifies the outgoing data

connection, while the second argument specifies the incoming connection. Each kernel and

PLIO object has an in and out array containing a list of inputs and outputs, which are

used as arguments to the connect constructor. The PLIO objects only contain a single

input for input PLIOs and a single output for output PLIOs, while for kernels the inputs

and outputs are determined by the kernel arguments. For example vadd.in[1] on line 18

refers to the second input argument of the vector add kernel, which corresponds to the

input window y in Listing 1.

Kernel mapping By default the aiecompiler will automatically create a floorplan for

the AIE array based on the graph definition. The ADF API however also provides mech-

anisms for manually adding location constraints in the graph definition. For example to

specify that the vector add kernel should be placed on tile (25, 0), we could add the assign-

ment location<kernel>(vadd) = tile(25, 0) to the graph constructor. Similarly the

function location<buffer> can be used to limit a buffer placement to a specific memory

bank in an AIE tile.

Data movement between host and AI Engine

To move data to the AIE array on the VCK5000, PL kernels can be used. PL kernels

live on the programmable logic of the FPGA inside the VCK5000, and can be written in

hardware description language (HDL) languages such as Verilog and VHDL, or when using

high-level synthesis (HLS) tools such as Xilinx Vitis in C++. It is possible to use the PLIO

interface to integrate an AIE design into a larger FPGA program, but for sending data

from the host to the AIE array, a simple HLS PL kernel can be used.

Listing 4 shows a simple PL kernel for sending an array mem_x to a HLS stream, which can

later be connected to a PLIO connection in the AIE design. On lines 10–12 an element is

12



2.1 VCK5000 and AI Engine

1 using namespace adf;

2 class simpleGraph : public graph {

3 private:

4 kernel vadd;

5 input_plio x, y;

6 output_plio out;

7 public:

8 simpleGraph() {

9 vadd = kernel::create(vector_add);

10 source(vadd) = "kernels/vadd.cpp";

11 runtime<ratio>(vadd) = 0.9;

12

13 x = input_plio::create(plio_32_bits, "data/x.txt");

14 y = input_plio::create(plio_32_bits, "data/y.txt");

15 out = output_plio::create(plio_32_bits, "data/out.txt");

16 connect<window<256>> net0(x.out[0], vadd.in[0]);

17 connect<window<256>> net1(y.out[0], vadd.in[1]);

18 connect<window<256>> net2(vadd.out[0], out.in[0]);

19 }

20 }

Listing 3: A graph definition containing a single vector add kernel with data connections.
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2. BACKGROUND

1 void mm2s(ap_int<32> *mem_x, int size,

2 hls::stream<qdma_axis<32, 0, 0, 0>> &stream_x) {

3 #pragma HLS interface m_axi port = mem_x offset = slave

4 #pragma HLS interface axis port = stream_x

5 #pragma HLS interface s_axilite port = mem_x bundle = control

6 #pragma HLS interface s_axilite port = size bundle = control

7 #pragma HLS interface s_axilite port = return bundle = control

8 for (int j = 0; j < size; j++) {

9 #pragma pipeline II = 1

10 qdma_axis<32,0,0,0> x;

11 x.data = mem_x[j];

12 x.keep_all();

13 stream_x.write(x);

14 }

15 }

Listing 4: A PL kernel that can send data from the host to a PLIO connection in the
AIE array.
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prepared to be send over the stream on line 13. The statement on line 11 sets the content

of the element to the current data point in the mem_x array, while the keep_all call on

line 12 marks that all 32-bits of the element are valid and should be read on the other end

of the stream.

Compilation scheme

To compile an AIE design to be run on the VCK5000, first the ADF graph needs to be

compiled by aiecompiler. Only the graph source file where an instance of the graph design

is initialized needs to be provided. The compiler will automatically extract the relevant

kernel files that are part of the design. The aiecompiler will first compile the kernel files

to byte code the AIE tiles can understand. The compiler will then run a global placement

algorithm to determine the mapping of the kernels to AIE tiles, the placement of buffers on

the memory banks in the tiles, and the stream connections between the tiles. The whole

specification, together with the byte code for the AIE tiles then gets packaged to a single

static library called libadf.a by default.

The HLS PL kernels can be compiled conventionally using the v++ compiler [19] to Xilinx

object (XO) objects. The AIE specification in libadf.a and the XO objects can then be

linked into an FPGA design for the VCK5000 using the v++ compiler together with a

connectivity specification. The connectivity specification specifies which PL kernels will

be part of the design, where the PL kernels will be located on the FPGA, and how the PL

kernels will be connected to the AIE.

2.2 BLAS

The BLAS specification [20] describes a set of routines containing commonly used low-level

dense linear algebra operations. The aim of the routines is to provide a pre-defined set of

basic building blocks to compute basic vector and matrix operations, which can be used to

develop higher-level linear algebra libraries, such as LAPACK [21]. This design has made

it possible for software vendors to develop BLAS implementations optimized for specific

computer architectures, which can be used as backend for the higher-level libraries. [9]

The BLAS routines are divided in three levels: Level 1 contains scalar, vector and vector-

vector operations, Level 2 contains matrix-vector operations, and Level 3 contains matrix-

matrix operations.
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There are many BLAS implementations available for different computer architectures.

For CPUs there are popular open-source implementations such as OpenBLAS by Zhang

et al. [10], as well as implementations from hardware vendors, like Intel oneMKL [22]

and AMD AOCL [23]. For GPUs, NVIDIA provides a CUDA implementation called

cuBLAS [12]. For FPGAs, AMD provides the Vitis BLAS [24] library for AMD Alveo

FPGAs and De Matteis et al. present a BLAS implementation available for Intel FPGAs

called FBLAS [25].

2.3 Related work

There are multiple state of the art implementations of the Level 3 General Matrix Multiply

(GeMM) routine. Lei et al. show a design utilizing both the PL and AIE array of the

VCK1901, and reaching up to 70% of the AIE tiles peak performance [26]. Taka et al.

similarly show an AIE design achieving a throughput of up to 77 TOPs on the AIE [27].

However these works only cover a single BLAS routine and do not aim to automatically

generate the routines based on the user requirements, differentiating them from the work

in this thesis. They can however prove useful to integrate into the aieblas library.

Zhuang et al. propose the CHARM framework, which can automatically generate AIE

designs that can compute matrix-matrix multiplications. The original version of CHARM

uses a text configuration file to specify the user configuration for the code generation [28],

while CHARM 2.0 offers a Python API to configure the code generator [29]. Using 32-bit

floating-point datatypes, they reach up to 2.94 TFLOPS inference throughput for multiple

machine learning tasks. While the project aims to be easy to use without requiring a

deep understanding of the AIE toolchain, it only focuses on matrix-matrix multiplications,

heavily focusing on AI workloads. It cannot be used as a full numerical library like BLAS.

Zhang et al. describe a framework called EA4RCA to generate AIE designs for communic-

ation avoiding applications, a specific set of applications which have a minimal amount of

data movements to accomplish the task [30]. While this described framework also gener-

ates AIE code, the project has a different focus than aieblas. EA4RCA aims to maximize

the performance of AIE code, and provide a different method for programming the AIE.

It does not aim to provide a high-level library that can be integrated into existing code,

like aieblas.
1The VCK190 is an embedded board that uses the same PL area and AIE array that is on the VCK5000.
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Heinz et al. provide integration for the VCK5000 in the existing TaPaSCo framework,

providing support for the AIE as well. The TaPaSCo framework partially automates the

development FPGA designs, and allows the integration of a AIE graph definition. However

the framework does not automate any of the development of the AIE graph itself.
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Design

In this chapter we explore the design considerations involved in developing our BLAS

implementation aieblas using the AMD AI Engine.

3.1 BLAS interface

We will have to decide how to adapt the BLAS interface to fit in an AIE design. We

will have to make sure that we are able to utilize the spatial dataflow architecture of the

AIE. Additionally we will have to decide which routines to include in the initial version of

aieblas.

3.1.1 Mapping a BLAS routine to an AI Engine kernel

All BLAS routines follow a general format where the first arguments describe the dimen-

sions of the operation, the input vectors are specified by a memory location paired with

the stride of the elements, and the result will be stored in one of the incoming vectors

or matrices. For example if we look at the axpy kernel computing the operation αx + y,

the routine signature is XAXPY(N, ALPHA, X, INCX, Y, INCY), where the result will be

stored in the parameter Y.

In the dataflow model of the AI Engine, kernels are expected to read incoming blocks of

data and produce new outgoing blocks of data; it is not possible to write the output of a

routine back to an input stream or input window. In our AIE design we will thus have to

deviate from the BLAS specification and produce a new data stream for the output result
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of a routine. Note that a host API could be adapted to store this new result buffer into

the correct buffer specified by the BLAS specification.

Separating the outgoing data from the incoming data comes with the additional benefit

that it will make it easy for us to create chains of routines in a large pipeline, by chaining

the output of a routine to the input of another routine.

We will need to choose between streams and windows to send data to the AIE kernels.

Since some of the second level BLAS routines will require us to use data in a vector multiple

times, we will use windows to send vectors and matrices to the routines on the AIE. For

the scalar values we will also need to use streams or windows, since the VCK5000 does not

allow us to directly pass parameters from the host to the AIE itself, and we can only write

HLS streams from PL kernels to the AIE. Windows have a minimum size of 16 bytes, so

if we used windows for scalar values we would have to pad the values to 16 bytes. Since

we can store the scalars inside the kernels itself, and thus we do not require the feature of

windows being able to re-read values from the buffer, it is more sensible to use streams to

send scalar values to the AIE, which do not have a minimum size.

It is not good for performance in a dataflow architecture to have stride in the vector

arrays, since this means that unused data is streamed to the kernels, so it is sensible to

not implement stride support in the AIE itself. If stride support is required this would be

better to implement in the PL kernels before the data gets send to the AIE array. This

has the additional benefit of limiting the amount of scalar parameters that we need to add

to the AIE kernels, since we can only use two input streams per kernel at most.

3.1.2 Supported BLAS routines

As specified in section 2.2, the BLAS interface contains three levels. In this subsection, we

describe which routines will be supported in the initial version of aieblas.

First level

The first BLAS level consists of 16 routines limited to vector and scalar operations. Most

of the functions can be implemented on the AIE, however there are some routines which

are not useful to implement on the AIE. Firstly there are two scalar only routines, rotg

and rotmg that generate plane rotations. This can not be accelerated and is more sensible

to compute on the host device. There is also a copy routine, which is intended to copy a

data buffer. Since we use a data-flow model on the AIE the data lives as streams, so we
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always output the results of a routine to a new output stream, defeating the purpose of a

copy routine.

Second level

Due to time constraints we will only implement the gemv routine which computes a General

Matrix-Vector Multiplication (GeMV) operation. This will demonstrate the ability of

running second level functions on the AIE, while the expandable design of aieblas allows

the library to be extended with more second level functions if required.

Third level

The third level consists only of matrix-matrix routines which require complex designs to run

on spatial architectures. We will not cover these complex designs in this thesis. However

as mentioned in section 2.3 there are already multiple implementations of GeMM routines

available for the AIE. If this routine is desired, it would be possible to integrate the existing

work into aieblas.

3.2 aieblas design

In this section we describe the general design of the aieblas code generation process, and

highlight the important design choices to keep the code generation adaptable and make

aieblas easy to use.

The code generation will have to create a complete AIE design as described in section 2.1.2,

which will require us to generate AIE kernels to execute the routines, a dataflow graph to

connect the routines, PL kernels to interface with the host, and a build system to build

the design.

3.2.1 User configuration

We need a specification for how the user will be able configure the aieblas generated

design. Here we should take three things into consideration:

1. The user configuration should be easy to write and should not require deep knowledge

of the AIE architecture.

2. The user configuration should still allow details of the underlying implementation to

be changed, such as the window sizes and vector instructions.
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3. The design should be adaptable, such that it is easy for new options to be added to

the configuration.

A natural fit for these requirements is the JavaScript Object Notation (JSON) format.

The JSON format is easy for users to write, we can have optional fields for advanced

options, and we can add new fields to the specification if we want to add new options to

the configuration.

1 {"kernels": [

2 {"blas_op": "scal",

3 "user_name": "scale",

4 "type": "int32",

5 "vector_size": 8,

6 "window_size": 256,

7 "extra": {"alpha": 2}

8 },

9 {"blas_op": "dot",

10 "user_name": "dot",

11 "type": "int32"

12 }

13 ],

14 "connections": [

15 {"in": {"kernel": "scale", "parameter": "out"},

16 "out": {"kernel": "dot", "parameter": "x"}

17 }

18 ],

19 "platform": "xilinx_vck5000_gen4x8_qdma_2_202220_1",

20 "profile": false

21 }

Listing 5: An example aieblas JSON configuration containing a scal and a dot kernel.

In Listing 5 we show an example of a JSON file containing an aieblas configuration for

a scal and a dot kernel, where the output of the scal routine is used as one of the input

vectors of the dot kernel.

To keep the configuration easy to use, the only required fields for each kernel are: (1)

the blas_op to specify the BLAS routine to generate, (2) user_name to specify a unique
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name for the kernel, and (3) dtype to specify the data type of the input and output data.

However we still allow access to more advanced settings through optional fields, such as

the window and vector sizes. If these fields are not set, they will use their default values.

Each kernel can also use a special extra field to specify BLAS routine specific settings.

For example in the example configuration, we set the value of the scalar α in the scal

routine to the value 2.

The connection section of the specification is used to chain the outputs of kernels to inputs

of other kernels in the dataflow graph. In the example configuration the output of the scal

routine is set as input for the dot routine. If a connection is not listed in this specification,

a PL kernel will need to be generated by aieblas to handle this connection from the host.

3.2.2 Code generation

With the input format and the target output defined, we can create a code generator. We

will write aieblas in C++, since the object-oriented design of C++ is useful as a basis for

our generator, and it makes it easy to integrate the library with the Xilinx Runtime library

(XRT) which also uses C++. We specifically will use the C++23 standard, which allows

us to use the new print and format libraries that are useful for our code generation.

To ensure compatibility with older compilers, we use a special compatibility header to

provide definitions for the print and format functions if they are not supported by the

compiler. Since the format library is especially complex to implement, we will use the

{fmt} library [32] as a fallback, which uses the same syntax as the C++20 format library.

The general structure of the code generator is shown in Figure 3.1. First the user specific-

ation will be parsed using a JSON parser. Since C++ does not have a native JSON parser,

we use the JSON for Modern C++ library [33] to create our parser.

The parsed user configuration gets passed to the main generator. To prevent duplication

of code, the generator is split into two parts.

1. A main generator which implements most of the boilerplate code, which either is

mostly static, or does not depend on a specific BLAS routine. Examples are the

CMake build system and the graph specification.

2. A sub generator specification which specifies functions for generating routine-specific

code. For each BLAS routine, we create a subclass of this specification, and imple-

ment the highly routine-specific code, such as the AIE kernel.
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The sub generator design allows us to easily implement routine-specific optimizations,

since the important routine-specific code is contained in a single subclass which does not

influence the rest of the project. It also allows us to easily implement new BLAS-routines

into the aieblas library by implementing a new sub generator.

Main generator

Kernel generator

Graph generator

PL generator

CMake generator Link generator

User settings

JSON parser

Sub-generator specification

Extra JSON parserKernel
implementation

Kernel argument
list

PL implementations Link
implementation

GEMV
implementation

AXPY
implementation

DOT
implementation

SCAL
implementation

ASUM
implementation

ROT
implementation

Sub-generator implementations

⋯

Code generation

JSON specification

AIE design

Figure 3.1: Overview of the code generation design in aieblas.
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Implementation

In this chapter we describe the implementation of aieblas based on the design described

in chapter 3.

4.1 Kernel Generation

We start with the AIE kernel generation for the BLAS operation. To store the requested

kernel settings, we use a C struct that stores the requested BLAS operation, a user-defined

name for the kernel, the datatype of the kernel, the size of the AIE vector units, and the

window size. Based on these settings we can generate the BLAS routines.

4.1.1 Blueprints

Before we implement a code generator for the BLAS routines, we start by creating blueprint

implementations of each BLAS operation. These blueprint implementations will be used

as a basis for the code generation. We will highlight a few blueprints that show different

challenges in porting BLAS operations to an AIE kernel.

Scale kernel

The first blueprint we present is a blueprint for the scal BLAS routine, which scales a

vector by multiplying a scalar α with a vector x.

The blueprint for the scal routine is shown in Listing 6. Starting with the function

signature on lines 6–7, we see that we have an input stream to stream the scalar α to the
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1 #define NUM_SAMPLES 64

2 // 64 / 8

3 #define NUM_LOOPS 8

4 int32 chess_storage(%chess_alignof(v4int32)) alpha_storage[4] = {0,0,0,0};

5

6 void scal(input_stream<int32> *alpha, input_window<int32> *x,

7 output_window<int32> *out) {

8 int32 *alpha_store = &alpha_storage[0], *alpha_set = &alpha_storage[1];

9 if (*alpha_set == 0) {

10 *alpha_set = 1;

11 *alpha_store = readincr(alpha);

12 }

13 aie::vector<int32, 8> vx, vout;

14 aie::vector<int32, 8> scalar = aie::broadcast<int32, 8>(*alpha_store);

15 for (unsigned i = 0; i < NUM_LOOPS; i++) {

16 vx = window_readincr_v<8>(x);

17 vout = aie::mul(vx, scalar).to_vector<int32>();

18 window_writeincr(out, vout);

19 } }

Listing 6: scal routine, which scales a vector by multiplying a scalar α with a vector x.

kernel, an input window x to receive the incoming vector, and an outgoing vector out to

write the result to.

Skipping over the initialization for now, we can see that the core of the function consists

of a for-loop from lines 16–20. In each iteration a vector of eight integers is read from the

input window, the mul function is used to multiply the vector with the scalar, and the

result is written to the output window. We need to manually convert the output of the

multiply function to a vector, since all multiplication functions of the AIE API return an

accumulator. Accumulators use accumulator registers of the AIE which contain more bits

than the vector registers, meaning intermediate results will have a higher precision before

the end result is converted to a vector again. Since we are using 32-bit integers in this

blueprint, the AIE will be using the 48-bit accumulator registers to store the result of the

multiplication.

We can see that the for-loop runs for eight iterations, and a total of 64 integers will be
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read from the input window, and written to the output window. Since we are using 32-bit

integers, this means that the input and output windows will need to have a window size

of 64 × 32/8 = 256 bytes. If we want to compute a scale operation on a vector of a 1024

elements, the kernel would need to be run for 1024/64 = 16 invocations. This poses a

challenge for reading the scalar α, since if we were to read a single element from the input

stream on each invocation, we would need to re-stream the scalar to the kernel for each

invocation. To prevent this we use the local memory of the AIE tile to cache the scalar

value and only read from the stream on the first kernel invocation, as can be seen on lines

8–12. On line 4 we declare a global array that we use to cache the values. We use a special

chess compiler directive to align the array to a 128-bit boundary, which is required if we

want to use vector instructions on the array [16].

Dot kernel

The next interesting blueprint to look at is the dot BLAS routine, computing the dot

product of two vectors of the same size.

The blueprint for the scal routine is shown in Listing 7. In the core of the function

from lines 17–21, the kernel reads eight elements from each of the two incoming vectors,

multiplies the corresponding elements of each vector, and adds the results to a global result

variable.

The major difference between the scal and dot routine is that the dot routine reduces the

output to a single scalar. This means the output can only be written to the output stream

once the whole dot product is computed. To accommodate for this we will need to keep

track of the amount of times the kernel has been executed, and how large the incoming

vectors actually are. To keep track of the amount of kernel invocations we use a counter

stored in the local memory which is incremented on each kernel invocation, as can be seen

on line 22. To determine the size of the incoming vectors we add an additional input

stream, such that we can stream the vector size from the host to the kernel via PLIO. On

lines 23–25 we can see that the output is only written to the output stream on the last

kernel invocation.

One more thing to note is that an aligned array of eight integers is used in vector calcu-

lations by casting the array to a vector on line 15, and storing it as reference in a new

variable. This new variable can be used like a regular AIE vector as can be seen on line 20.

At the end of the kernel on line 24 the result vector gets summed to a scalar using the

reduce_add function.
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1 #define NUM_SAMPLES 64

2 // 64 / 8

3 #define NUM_LOOPS 8

4 uint64 chess_storage(%chess_alignof(v4int64)) counter[4] = {0,0,0,0};

5 int32 chess_storage(%chess_alignof(v8int32)) result_storage[8]

6 = {0, 0, 0, 0, 0, 0, 0, 0};

7

8 void dot(input_stream<uint64> *in_size_n, input_window<int32> *x,

9 input_window<int32> *y, output_stream<int32> *out) {

10 uint64 *num_cycles = &counter[0];

11 uint64 *cycle = &counter[1];

12 if (*num_cycles == 0) {

13 *num_cycles = readincr(in_size_n) / NUM_SAMPLES;

14 }

15 aie::vector<int32, 8> &result = *(aie::vector<int32,8>*)result_storage;

16 aie::vector<int32, 8> vx, vy;

17 for (unsigned i = 0; i < NUM_LOOPS; i++) {

18 vx = window_readincr_v<8>(x);

19 vy = window_readincr_v<8>(y);

20 result = aie::add(aie::mul(vx, vy).to_vector<int32>(), result);

21 }

22 *cycle += 1;

23 if (*cycle == *num_cycles) {

24 writeincr(out, aie::reduce_add(result));

25 }

26 }

Listing 7: dot routine, which calculates the dot product of a vector x and y.
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GeMV kernel

The last blueprint to look at is for the gemv routine, which calculates the the matrix-vector

calculation z ← αAx + βy, where A is a matrix, x, y and z are vectors, and α and β are

scalar values.

1 #define NUM_SAMPLES 64

2 // 64 / 8

3 #define NUM_LOOPS 8

4 uint64 chess_storage(%chess_alignof(v4int64)) counter[4] = {0, 0, 0, 0}

5

6 void gemv(input_window<int32> *A, input_window<int32> *x,

7 output_window<int32> *out) {

8 uint64 *cycle = &counter[0];

9 if (*cycle == 0)

10 window_acquire(x);

11 if (*cycle % NUM_SAMPLES == 0)

12 window_acquire(out);

13 aie::vector<int32, 8> vx, vA;

14 aie::vector<int32, 8> vout = aie::zeros<int32, 8>();

15 for (unsigned i = 0; i < NUM_LOOPS; i++) {

16 vA = window_readincr_v<8>(A);

17 vx = window_readincr_v<8>(x);

18 vout = aie::add(vout, aie::mul(vA, vx).to_vector<int32>());

19 }

20 window_decr_v4(x, NUM_LOOPS);

21 window_writeincr(out, aie::reduce_add(vout));

22 *cycle += 1;

23 if (*cycle % NUM_SAMPLES == 0)

24 window_release(out);

25 }

Listing 8: Shortened gemv routine, which calculates a matrix-vector multiplication, limited
to matrices with a width of 64 elements.

A shortened version of the blueprint for the gemv routine is shown in Listing 8. Note that

the implementation is limited to matrices that have the same width as the defined window

size, which in this case matches 64 elements. Only the matrix-vector multiplication itself
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is shown for brevity. While the core of the function from lines 15–18 is similar to the dot

routine, this kernel is interesting to look at because in each kernel invocation a different

amount of data is read from and written to the input and output windows.

In each kernel invocation a full row of the matrix A is read, advancing to the next row

after the kernel is finished, and the row is multiplied by the vector x, with the same vector

being used for the next kernel invocation. At the end of the kernel only a single value of

the output vector has been computed, meaning the output window will only be filled after

64 iterations.

To summarize, we would want the input window A to advance by 64 elements after each

kernel invocation, the input window x to not move at all1, and the output window to

move after each 64th invocation. However by default each window will advance to the next

elements between each kernel invocations. To solve this, we can mark the windows we

do not want to advance each iteration as asynchronous in the graph specification, which

allows us to take control of when the window will advance to the next slice of data. Once

we have marked a window as asynchronous, we need to manually acquire a window lock

before we start reading or writing data from or to the window, and release the window

once we want to advance to the next slice of data. On line 10 we can see that we acquire a

lock for x on the first invocation and never release it, meaning the data from the vector x

will always stay in the window. We can also see on lines 12 and 24 that the output window

is acquired and released every 64th invocation, making sure the output window is filled

before it advances.

4.1.2 Implementation

To automatically generate the AIE kernels we create a add three functions to the subgen-

erator specification described in section 3.2.2, which will be called by the main generator

class. We create function to: (1) generate the global kernel code, (2) generate the ker-

nel arguments, and (3) generate the kernel body. By splitting the kernel generation in

three parts we can us the kernel argument generation to generate both the header function

declaration, as well as the source function definition.

We have to slightly adapt the blueprints for the code generator to be able to generate

different kernels based on the user settings. For example, if the user requests to use scalar
1Note that an alternative solution would be to stream the vector x to the kernel again for each invoc-

ation, but this would make it harder to chain kernels.
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operations by setting the vector size to zero, the AIE specific datatypes and vector opera-

tions have to be replaced with native C++ scalar types and normal arithmetic operators.

4.1.3 Optimization

Restrict qualifier

AMD recommends using the C restrict qualifier when two pointers will not point to

the same memory locations, to allow the compiler to perform more aggressive optimiz-

ations [18]. For example, in the scal routine in Listing 6 the compiler can not assume

by default that the input window x and the output window out refer to separate memory

locations, which would add additional memory dependencies in the main for-loop limiting

the pipelining possibilities. If we add the restrict keyword to our kernel arguments, we can

guarantee to the compiler that x and out will never point to the same memory location.

In our code generation we thus make sure that the restrict qualifier is always added to the

kernel arguments.

Compile-time scalar values

Most BLAS operations include scalar values to scale vectors or matrices, but in a lot of

computations it is either not necessary to scale a vector or matrix, or the scale factor is

known at compile time. To account for this we add additional kernel options for all kernels

that have scalar inputs to embed the scalar value into the kernel, removing the stream

required to send the scalar to the kernel and reducing the amount of resources required for

the design. This is especially important because there is a limit to the amount PL kernels

that can be placed on the FPGA, and each unused scalar value would add an extra PL

kernel to the design.

Tiling gemv implementation

To calculate the matrix-vector product y = αAx + βy in the gemv routine, the vector x

will have to be re-iterated over for every row in A. If we have an x larger than the size of a

window, we cannot keep the entire vector of x in view of the AIE kernel. If we use a simple

calculation pattern, where we iterate through the matrix A row-wise, we would have to

resend the vector for every row of A. This causes unnecessary data movement, which can

impact the performance of the AIE routine. If we were to iterate through A column-wise,

we would have a similar issue, but with the y vector.

A solution to this is to use a tiling interface, where instead of iterating through the matrix

row-wise or column-wise, we divide the matrix up into tiles, where the height and width
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of the tiles are equal to the window size of the kernel parameters. We can then calculate

a the tiles row-wise to produce a single window of output data for each row of tiles. For

each row inside a tile, we use the same part of the vector x, so instead of having to re-send

vector x to the AIE for every row of A, we now only have to resend it for every row of

tiles. If we use a 1024 × 1024 matrix and a window size of 64 as an example, we would

have to resend x a 1024 times for the non-tiling approach, and only 1024/64 = 16 times for

the tiling approach.

To implement this tiling approach from the non-tiling approach, two changes have to be

made. (1) The AIE kernel now has to store the intermediate results in an array of the

same size as the window, instead of in a single value, since we are now computing a row

of blocks at a time instead of a single row of A. (2) The PL kernel has to be modified to

send the matrix A in a block-wise pattern, instead of the normal row-wise pattern.

4.2 Graph generation

In the ADF graph generation we need to declare and initialize all the kernels, declare PLIO

connections, and connect the kernel parameters. We have a single function in the main

generator class which generates graph. It first loops over the kernels in the kernel list and

declares and initializes the kernels based on the user-specified kernel name.

For creating the PLIO connections and connecting the kernel parameters, we first need

to know how many and which arguments each kernel has. To achieve this, the BLAS

operation specific generators contain a function for obtaining an ordered list of the kernel

arguments. The items in the list store information of the kernel argument, such as whether

it is an input or an output, the name of the argument, whether it is a stream or window,

and if the argument is asynchronous. While this does give us information on the general

arguments, we do not know yet if the window or stream will be connected to PLIO or to

another kernel. For this we use the connection map stored in the kernel struct. For each

argument we can look up the name of the argument, retrieve whether it is connected to

another kernel, and if so retrieve the name of the connecting kernel and argument. We

also have a special disabled state which is used when scalar values are set at compile-time,

and thus the input stream is unused.

For each kernel argument, if it is not connected to another we create a new PLIO object,

which we initialize with a unique name by combining the kernel user name with the name

of the argument.
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chain length
Compilation time

manual partitioning automatic partitioning
5 1m 49s 1m 50s
10 2m 17s 2m 18s
15 2m 20s 2m 36s
20 2m 48s 5m 55s
25 3m 17s 10m 43s
30 3m 22s 33m 22s
40 3m 55s 33m 57s
50 4m 58s –

Table 4.1: AIE compilation time of chains of BLAS scal operations with and without a
manually partitioned layout. A dash means the global placer of the compiler could not find a
solution to generate a floorplan and the compilation failed.

To connect the kernel parameters we need to know the index of the input and output

arguments. To keep track of this we keep a counter of the amount of inputs and outputs

we have encountered, and we iterate through the argument list sequentially. If the argument

is connected to PLIO, we can directly connect it to the previously declared PLIO object.

In the case where the argument is connected to another kernel, we first need to know the

index of the connecting argument of the other kernel. To achieve this, we do a lookup

in the kernel list based on the kernel user name. Once we have found the other kernel

we iterate through the arguments until we find the corresponding argument, and we keep

track of the index in the input and output list of the external kernel.

Once we have the index of both the incoming and outgoing data connection, we can

declare the connection, marking the arguments as asynchronous when applicable. To

avoid duplicate declarations, we only declare connections between two kernels if the current

argument is an output window or stream.

4.2.1 Kernel placement

Since we have not specified any location constraints on the kernels in the graph so far,

the floorplanning will be automatically performed by the compiler. However if we have

a long chain of operations, this can heavily increase compilation times. In Table 4.1 we

show the compilation time of chains of scal operations, where one version does not place

any location constraints and uses the automatic partitioning, while the other version uses

location constraints to manually place each kernel into a specific AIE tile. We can see
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(a) manually partitioned AIE floorplan (b) automatically partitioned AIE floorplan

Figure 4.1: Comparison of two AIE programs that compute the same chain of 40 BLAS scal
operations. The first program uses a manually partitioned layout, while the second program
uses an automatically partitioned layout by the aiecompiler. The colored boxes highlight
kernels that follow each other in the compute chain, but which are not placed in adjacent tiles
by the compiler.

that the compilation time of the manually partitioned version steadily increases as the

chain becomes longer, mostly because of the extra kernels that have to be compiled, the

automatic partitioning increases much faster. At a length of 40 operations, the automat-

ically partitioned program takes around ten times as long to compile than the manually

partitioned program, spending most of the time running the global placer. We can also see

that once we reach a chain length of 50, the compiler is no longer able to find a solution

for the automatically partitioned program and the compilation fails.

If we look at the comparison of the automatically and manually partitioned floorplans in

figure 4.1, we can also see that the compiler does not always find an ideal solution. In

this case the colored boxes indicate kernels that are directly connected, but which are not

placed in adjacent tiles. Since kernels can only access memory from adjacent cells, this

means that the compiler will have to place duplicate buffers for both kernels, and copy the

data from the first buffer to the second buffer before the second kernel can start executing.

To allow us to create a manual partitioning in aieblas, we add an optional field in the
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kernel struct to store a tile location for each kernel. This field is used by the graph generator

to put a location constraint in for the desired kernel.

4.3 PL kernel generation

For kernels that use PLIO connections to send or receive data from the host, we need to

generate PL kernels. The amount of required PL kernels needed can differ between BLAS

operations, and the connections setup by the user. To account for this we use the BLAS

operation specific generators to produce a list of PL kernels that need to be generated,

together with a lambda function to generate the PL kernel. The main code generator will

then iterate through this list and call the lambda functions to generate the PL kernels.

4.4 Build system generation

4.4.1 Connectivity configuration

To build the AIE design we first need to generate a configuration file describing how the PL

kernels are linked to the AIE. We first generate general settings such as the platform file of

the VCK5000, and profile options. Then we iterate through the BLAS kernel list, and call

a function of the BLAS operation specific generators, which will generate the connectivity

configuration of the PL kernels related to that BLAS operation.

4.4.2 CMake project

Now that we have generated all the source files required for the AIE design, we need to

generate a build system to compile the source files into a complete design to load onto

the VCK5000. To accomplish this we generate a CMake project that contains steps to (1)

build the ADF graph into a static library, (2) build all the PL kernels to XO objects, and

(3) link and package the ADF graph and the PL kernels into an xclbin file containing

the whole design. The cmake project contains a single target called aie to generate the

xclbin, which compiles the xclbin file in the CMake build directory. This allows the

CMake project to be integrated into the parent project containing the user program using

aieblas.

The cmake project is mostly statically generated, we only need to take the list of source files

from the generator and place the sources into the placeholders inside the cmake project.
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5

Evaluation

5.1 Performance evaluation

To evaluate the performance of BLAS routines generated by aieblas, we measure the

execution time of several designs, and compare the performance to OpenBLAS running on

the CPU. We will run the following experiments:

1. Single routines; We run two designs only containing a single generated BLAS routine

to set a baseline of the performance of the routines. One design uses the level 1 axpy

routine, and the other design uses the level 2 gemv routine.

2. Tiling optimization; We evaluate the performance of the tiling optimization for the

gemv routine, as described in section 4.1.3, compared to a non-tiling implementation.

3. Dataflow optimization; To test the capabilities of the spatial dataflow architecture

of the AIE, we compare the performance of an AIE design containing two BLAS

routines chained together to another AIE design containing the same two BLAS

routines, but storing the intermediate result in the memory of the FPGA instead of

chaining the routines together.

4. Sum reduction; We run a larger design computing the sum of 32 vectors using a

5-level reduction to test the pipeline performance of the AIE.

5.1.1 General experiment setup

We run our performance experiments on a single node of the AtLarge cluster at the Vrije

Universiteit. The node has a 10-core Intel Xeon Silver 4210R CPU running at 2.4GHz,
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256 GB of DDR4 memory, and a single VCK5000 accelerator card.

All the code for the performance experiments have been compiled using GCC 11.4.0 for the

host code, together with the compiler flags -O3 -DNDEBUG to enable compiler optimizations.

The VCK5000 designs are compiled using Xilinx Vitis v2022.2, and we use XRT 2.14.0 to

control the device from the host.

For the CPU benchmarks we use OpenBLAS 0.3.27, optimized for the CPU architecture

using the following configuration: NO_AFFINITY SKYLAKEX MAX_THREADS=20.

5.1.2 Single routines

To set a baseline of the performance of single BLAS routines running on the AIE, we

measure the performance of a single level 1 axpy BLAS routine, and a single level 2 gemv

routine. For each routine we implement two AIE designs. The first design uses PL kernels

for sending and receiving the input and output data, which will measure the performance

of a complete AIE design as generated by aieblas. The second design generates the data

in a separate AIE kernel, and only uses a PL kernel to send a start signal to the data

generating AIE kernel and a PL kernel to receive a finish signal from the AI Engine. This

second design will provide us insights into how fast the AIE itself performs without the

overhead of the PL kernels.

We measure the execution time from the host from the moment the first PL kernel starts

and until the last PL kernel has finished receiving data from the AIE. For the designs

generating data on the AIE, we additionally measure the amount of cycles executed on the

AI Engine itself, using the intrinsic get_cycles function provided by the AIE API.

We compare the execution time of the AIE designs to the execution time of the same BLAS

routines run on the CPU using OpenBLAS. For the CPU designs we only measure the time

it takes to compute the BLAS routine itself.

All the results are averaged over three runs.

Results

Figure 5.1 shows the results of the experiments with the time measured from the host. We

observe that the CPU consistently outperforms the complete AIE design with PL by up to

60× for the axpy routine and 10-20× for the gemv routine, with the exception of a single

outlier in the CPU axpy results with a vector size of 214.
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Figure 5.1: Execution time of the single routine experiments, measured from the host ap-
plication.

It is to be expected that the CPU is faster than the AI Engine when executing a single

routine, since we are only utilizing a single tile of the AIE array and not using the dataflow

architecture of the device and we have overhead from sending the data from FPGA memory

to the AIE array. However this does not explain why the axpy routine takes significantly

longer to complete for a vector of 220 elements than the gemv routine takes to complete for

a matrix of size 216×64, while the latter requires more data transfers and computations.

If we look at the results of the AIE designs without PL kernels, we can see that the gemv

implementation is roughly 30% faster than with PL kernel, since we now do not have to

transfer memory to and from the FPGA, but the axpy implementation without PL kernel

is more than 10× as fast for the largest tested vector size than with PL kernel. This

indicates that there is an unexpected amount of time spend in the PL kernel of the axpy

routine. We suspect that this might be a bug in the older driver or compiler we have to

use for the VCK5000, since the latest driver and compiler do not support this device.

If we focus on the results without PL kernel, we can see that the CPU is between 8-18×

faster than the AIE implementations, with the exception of the outlying CPU results for

the axpy routine, which we suspect might be caused by OpenBLAS switching to a mul-

tithreaded implementation which has an overhead. Assuming that adding more routines

to the AIE design in a pipeline has a negligible influence on the execution time, the AIE
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Figure 5.2: Execution time measured from the host and AIE for the single routine imple-
mentations not using PLIO to communicate data.

should be able to outperform the CPU when using a larger computation which can be

pipelined.

Figure 5.2 shows the cycle measurements which we performed on the AIE compared to

the time measurements on the host. The cycles have been converted to execution time by

dividing it with the clock frequency of the AIE, which is 1.25 GHz. We can see that the

host measurements contains an overhead of around 0.1 ms, which is likely spent in XRT,

which makes the measurements less accurate for the smaller data sizes. However for larger

data sizes this inaccuracy becomes less significant, since the overhead remains constant.

5.1.3 Tiling optimization

To test the performance of the tiling optimization for the gemv routine described in sec-

tion 4.1.3, we compare an AIE design using a tiled gemv implementation to an AIE design

which does not use tiling. We run the experiments with different matrix dimensions.

Since there is only a difference in the amount of transfers to the AIE when changing the

amount of columns of the matrix, we expect the speedup of the tiling implementation

compared to the non-tiling implementation to scale with the amount of columns in the

matrix.
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Figure 5.3: Execution time of the tiling gemv experiments for different matrix sizes, measured
from the host application. Note that all experiments were run with up to 218 rows in the
matrix, but the VCK5000 could not allocate enough memory when running with the larger
matrices not shown in the figure.

Results

Figure 5.3 shows the results of the tiling experiments. The experiments with matrices of

at least 268 million elements did not complete, with the XRT driver reporting that not

enough memory was available. In total we allocate around 1 GB for this matrix size, so

there should be enough memory available on the FPGA’s 16 GB of memory. We can

however still analyse the other results.

We see that the tiling implementation is consistently circa 31% faster than the non-tiling

implementation. This is a larger speedup than expected, especially for the matrices with

41



5. EVALUATION

fewer columns, where there is only a small difference in the amount of data transfers to

the AIE.

Since we already saw in the single routine experiments that the PL kernels do not seem to

run entirely stable, the larger than expected speedup could be attributed to a problem in

the PL kernel performance of the non-tiling implementation.

5.1.4 Dataflow optimization

To test the pipelining capabilities of the spatial dataflow architecture of the AIE, we create

two AIE designs computing a compound axpydot routine, which consists of an axpy routine

computing z = w−α and a dot routine computing β = zTu, where u, w and z are vectors

and α and β are scalar values. The first design, as shown in Figure 5.4a, places the axpy

and dot routines seperately in the aie array, and stores the intermediate results z in the

FPGA memory. The second design, shown in Figure 5.4b, instead chains the output of

the axpy routine to the input of the dot routine, creating a pipeline containing the two

routines.

We test the two designs with differing vector sizes and we measure the execution time

from the host from the moment the first PL kernel starts and until the last PL kernel has

finished receiving data from the AIE. The results are averaged over three runs.

(a) Separate axpy and dot kernels (b) Chained axpy and dot kernels

Figure 5.4: Two different implementations of the combined axpydot program computing
z = w − αv and β = zTu.
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We expect the pipelined implementation using a dataflow design to execute significantly

faster than the implementation without dataflow. The pipeline should only add a few more

cycles to the computation, while the implementation without dataflow needs to wait for

the axpy routine to finish before being able to start the dot routine, which should roughly

double the execution time.

Results

Figure 5.5 shows the results of the dataflow experiment. We can see that the pipelined

dataflow implementation, which chains the output of the axpy routine to the input of the

dot routine, consistently executes around 1.5-2× faster than the implementation without

dataflow. With a vector size of 28 the non-dataflow implementation takes an average of

0.20 ms to complete, while the dataflow implementation takes 0.14 ms. For the largest

tested vector size of 220 the difference is even larger, with 60.07 ms for the non-dataflow

implementation and 30.28 ms for the dataflow implementation.

This result confirms our hypothesis that the implementation without dataflow will take

around 2× as long as the pipelined dataflow implementation, since it will have to completely

finish the axpy routine and store the results in the FPGA memory, before it cab start
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Figure 5.5: Execution time of the dataflow experiment, comparing two AIE designs com-
puting the compound axpydot routine. One design uses a dataflow design chaining the axpy
and dot routines, while the other design stores the intermediate result of the axpy routine in
the FPGA memory. Execution time is measured from the host application.
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executing the dot routine. The dataflow implementation on the other hand executes as

a pipeline, and only takes a few more cycles to compute the dot routine after the axpy

routine. In fact, if we compare the results to the single axpy routine experiments, we can

see that the dataflow axpydot implementation only takes a negligible 0.03 ms longer to

complete than the axpy routine for a vector size of 220.

5.1.5 Sum reduction

To fully test the capabilities of the spatial dataflow architecture, we use aieblas to generate

a pipelined 5-level sum reduction on the AIE, computing the sum of 32 vectors using axpy

routines. The dataflow graph of the sum reduction can be seen in Figure 5.6 with 32

incoming vectors going into the graph on the left, and one result vector going out of the

graph on the right. We compare two implementations, one using data sent from PLIO, and

one using AIE kernels to generate data on the AI Engine itself. The latter uses a separate

AIE kernel to generate each input vector.

Figure 5.7 shows the floorplan of the AIE design using PLIO. To be able to compile this

design, we have to manually specify the kernel locations in the aieblas configuration,

since the design is too large for the global placer of the aiecompiler to find a solution.

As a comparison to the CPU, we also implement an OpenBLAS design which executes 32

axpy routines in succession to calculate the sum of the vectors. Additionally we reuse the

results of the axpy routine from section 5.1.2 computing the sum of two vectors to compare

the execution time increase of the CPU and AIE when calculating a larger computation.

Results

Figure 5.8 contains the results of the sum reduction experiments. The graph on the left

shows the results from section 5.1.2 of a single axpy routine computing the sum of two

vectors, and the graph on the right shows the results of the new implementations computing

a sum of 32 vectors.

If we focus on the designs using PLIO, we can see a major increase in execution time when

calculating the sum of 32 vectors compared to the sum of 2 vectors, with a large spike when

going to a vector size of 216. This is unexpected, it should not take over half a second to

compute the sum of roughly 2 million elements on a device which can compute 1.25 billion

instructions per second on each tile. Additionally we do not observe the same behaviour if

we look at the designs which do not use PLIO to receive data from the host. We suspect
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Figure 5.6: Dataflow graph of an AIE design calculating the sum of 32 vectors.

45



5. EVALUATION

Figure 5.7: Floorplan of an AIE design calculating the sum of 32 vectors.
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Figure 5.8: Execution time of the sum experiment, the left graph containing programs
calculating the sum of two vectors, and the right graph containing programs calculating the
sum of 32 vectors. Execution time is measured from the host application.
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Figure 5.9: Execution time measured from the host and AIE for the sum implementations
not using PLIO to communicate data, showcasing the minimal overhead from the pipelined
sum reduction.

this is likely a bug with the PL kernels that is present in the old version of the drivers or

compiler, as described in section 5.1.2.

If we compare the AIE designs without PL kernels to the CPU implementations, we can

see that the AI Engine only observes a negligible execution time increase, while the CPU

takes between 15-28× longer to compute the sum of 32 vectors than the sum of 2 vectors.

Figure 5.9 shows us a closer look at the AIE implementations which do not receive data

from PLIO. If we look at the AIE measurements we again see a negligible increase in

execution time for the sum reduction compared to the single axpy kernel. In fact the

measured cycles show that the pipelined reduction only takes roughly 300 cycles longer

than the single axpy kernel, resulting in a 240 nanoseconds time increase.

5.2 Result verification of BLAS routines

To verify the correctness of the BLAS routines generated by aieblas, we compare the

results to the same routines provided by OpenBLAS, a well tested CPU implementation

of BLAS [10].
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Routine
Passed test

m = 256 m = 1, 024 m = 65, 536

asum ✓ ✓ ✓

axpy ✓ ✓ ✓

dot ✓ ✓ ✓

gemv ✓ ✓ ✗ (0.096% off)
iamax ✓ ✓ ✓

nrm2 ✓ ✓ ✓

rot ✓ ✓ ✗ (0.013% off)
scal ✓ ✓ ✓

Table 5.1: Results of the verification tests, which test if the results of aieblas routines differ
at most by 0.01% of OpenBLAS routines for random input data and vectors of size m. The
failed tests show the largest observed deviation from the reference results.

Experiment setup

We test all the routines provided by aieblas in a separate AIE design. For each routine

we use 512-bit vector instructions on the AIE, and have the window size fixed to 256 bytes.

We only use 32-bit floating-point datatypes, since the BLAS specification does not require

integer implementations, and there are no integer routines available in OpenBLAS.

Ideally we would also test every permutation of different vector and window sizes together

with chained BLAS routines, however each AIE design takes multiple hours to compile,

and thus we try to limit the amount of designs we have to generate.

We run each design with input vectors of the following lengths: 256, 1, 024 and 65, 536. We

fill the input data with random numbers generated by the mt19937 pseudorandom number

generator (PRNG) [34].

Since we use floating-point datatypes, and the CPU and AIE have different floating-point

units, we cannot directly compare if the floating-point numbers are exactly the same,

since the numbers can slightly differ based on the underlying precision of the arithmetic

implementations. Instead we verify whether the aieblas results differ at most 0.01% from

the reference OpenBLAS results. We discard smaller differences as insignificant rounding

errors, and not implementation errors.

Results

Table 5.1 shows the results of the correctness verification. We see that most routines pass

the tests, and the tests that didn’t pass only have a small deviation from the OpenBLAS
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results. For the gemv routine, 40 out of the 65,536 elements deviated more than 0.01%

from the OpenBLAS results, and for the rot routine only 1 element out of each of the two

output vectors deviated.

For the rot routine, we suspect the deviation comes from the fact that the value is cal-

culated using a single multiplication, followed by a single multiply-add instruction. The

AIE stores multiplication results in an accumulator of 80-bits, which has a higher preci-

sion than the 32-bit floating point numbers. This accumulator is directly passed to the

multiply-add instruction, meaning the multiply-add instruction uses this higher-precision

intermediate value as input, without converting it to a lower precision floating-point num-

ber first. The small deviation from the CPU results can reasonably be caused by the AIE

using higher-precision intermediate values.

For the gemv routine, each element of the output vector is constructed from a summation

of multiplication results. Since we use a matrix consisting of 64 columns, the results are

constructed using 64 multiplications, and 63 additions. Each of these operations have a

small relative error, but when accumulated, this relative error can grow larger than our

threshold of 0.01%. Since the largest error observed was only 0.096%, we suspect this is

the case.

We would expect the same to happen to the dot routine, since this also is a summation of

multiplication results, but the dot routine did pass the test. This can be explained by the

fact that the dot routine only produces a single element, while the gemv routine generates

65,536 elements in the output vector. We see that only about 0.06% of the elements in the

output vector of the gemv routine contained results that did not pass the tests, we would

need to run the dot kernel a very large amount of times to observe this 0.06% chance of

the test to fail.

Overall the two failed tests have a small enough error for us to say the designs containing

a single routine produce the correct results, and behave as expected.
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Discussion

6.1 Hardware limitations

During the development of aieblas we have been hindered by multiple limitations of the

VCK5000 hardware and software support. We will list these limitations in this section.

XRT offers numerous runtime functions to control the ADF graph, however these functions

are only supported on embedded platforms, and the application crashes with a runtime

error if you try to use them with the VCK5000.

The XRT driver also offers abilities to profile the AIE at runtime, however these profiling

options do not work with designs built using Xilinx Vitis v2022.2, and require a newer

version of the compiler to be used. Xilinx Vitis v2022.2 is the latest version of the compiler

which can be used by the VCK5000 platform, since the newer versions v2023.1, v2023.2 and

v2024.1 all do not support the VCK5000 platform. This also limits us in the development

of aieblas, since Xilinx Vitis v2023.1 and v2024.1 introduces several new features to the

AIE toolchain.

While can use the aiecompiler to simulate an AIE design, this simulation uses dummy

data for the PLIO connection, and can not be used to simulate a design together with the

PL kernels. This means that if we want to test a full design generated by aieblas, we

need to compile a full hardware design for the VCK5000, which can take up to three hours

to complete. Only then are we able to test if the design works as expected. If it does

not work we have a limited ability to debug our design, since the profiling options are not

supported by XRT, we can not get a clear view of why certain aspects of the design take

longer than expected, or why output results are incorrect. For example, we have not been
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able to debug why the PL kernel design of the axpy routines does not provide the expected

performance in chapter 5.

During the experimentation with the device we have had multiple occasions where the

AIE array became unstable, the device was unable to be hot reset, and the server containing

the VCK5000 had to be completely rebooted before the VCK5000 worked again.

6.2 Future work

In this section we describe various possible continuations of the work in this thesis. To

make aieblas complete, the missing second and third level BLAS routines could be added

to the library, by implementing the missing sub generators. As a start one of the existing

GeMV routines [26–29] could be integrated in the library.

While aieblas currently makes it easy to generate an AIE design, users still need to write

their own host application, interfacing with XRT. It would be useful to generate a host API

for aieblas, which hides away the details of XRT, and provides standard BLAS function

definitions that once called, launch the requested BLAS operations from the AIE design.

With a host API added to aieblas, it would be possible to automate the JSON user

configuration process, by performing a dry-run of the host application and keeping track

of the function calls to the host API. The JSON configuration could then be generated

based on the called functions.

Further optimizations for the existing BLAS routines in aieblas could be implemented.

For example it would be interesting to investigate optimized implementations of the existing

routines which can span over multiple AIE tiles, to utilize more of the computational power

of the device. Related work has shown that much higher performance could be achieved

on the AIE. [29]

Currently aieblas only targets the VCK5000, but recently AMD has started releasing

Ryzen CPUs with an integrated AI Engine. If aieblas was adapted to be able to target

these devices, it would create a much larger pool of target devices. The CPUs do not offer

PL, so the library would have to be adapted to use another method available on the CPUs

to communicate with the AI Engine array, but in principle the aie design itself should be

usable without further changes.

Alternatively the design choices for implementing a BLAS library on a spatial dataflow

architecture could also be used to create a library targeting other devices with a similar

architecture.
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Conclusion

Devices with a spatial dataflow architectures are being released as AI accelerators. For

these devices to be used for general numerical problem solving in the high-performance

computing (HPC) community, we need a high-level numerical library to program the device.

In this thesis we propose aieblas, a high-level BLAS library targeting the AMD VCK5000

with an AIE array. We determine important design requirements for developing a BLAS

library targeting a spatial dataflow architecture, and use the design requirement to develop

a code generator that generates AIE designs containing BLAS routines. We evaluate

the performance of the generated design using multiple experiments and compare the

performance to OpenBLAS, a CPU BLAS implementation. In this chapter we summarize

our findings, and answer the research questions as presented in section 1.1.

7.1 Main findings

[RQ1] Which design choices ensure a usable and expandable BLAS library

targeting a spatial dataflow architecture?

In chapter 3 we proposed several design choices to ensure a BLAS library can properly use

the spatial dataflow architecture of the AIE, while at the same time keeping the library

expandable. The design choices we propose are:

• The BLAS routines should be mapped to to an AIE kernel, where the kernel ar-

guments should stay close the the routine arguments. However small changes have

to be made to create separate output arguments for the kernels, to ensure we can

properly use the dataflow architecture.
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• It is important that we can chain BLAS routines in the BLAS library, such that we

can properly utilize the dataflow architecture.

• To keep the design expandable, the generator should be split in two parts: a main

generator which handles most of the static and non-routine dependent code, and sub

generators which implement the routine dependent code.

• The library should take a JSON configuration file as input, containing the requested

BLAS routines to be generated with kernel and graph settings.

[RQ2] How can we automatically generate a dataflow program consisting of

BLAS routines for an AI Engine from a high-level specification?

In chapter 4 we describe the implementation of the code generation in aieblas, which

takes a JSON file as input and automatically generates a full AIE design. The generated

AIE design consists of (1) AIE kernels implementing the requested BLAS routines, (2) an

ADF graph specification, specifying how the kernels are connected in the dataflow graph,

(3) PL kernels to connect the AIE array to the host, and (4) a build system to build the

generated files into a full design for the VCK5000.

[RQ3] What optimizations can we apply to the kernel generation of BLAS

routines to make the BLAS routines more performant on an AIE?

We proposed several optimizations in chapter 4 that we implement in the kernel generation

of aieblas. The optimizations are:

• The restrict qualifier can be used for the input arguments to allow the aiecompiler

to use more aggressive optimizations.

• If scalar values of BLAS routines are known at compile time, they can be embedded

into the source code of the AIE design, saving overhead from transferring the scalar

from the host to the AIE array at runtime.

• For the gemv, a tiling implementation can reduce the amount of data send to the

AIE array, by improving the data access pattern of the kernel.

[RQ4] How performant is the aieblas library compared to other BLAS libraries

when performing common routines?
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7.1 Main findings

We performed multiple experiments on BLAS routines generated by aieblas, as described

in chapter 5. When running a single routine on a single AIE tile, the AIE was significantly

slower than the same routine run on the CPU using the BLAS library OpenBLAS. However

when running a larger design consisting of multiple routines, the aieblas design gets

comparable performance to the CPU using OpenBLAS, if we do not use PL kernels.
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